Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Trials ; 19(6): 690-696, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2138991

ABSTRACT

Master protocol studies typically use an overarching protocol to answer several questions by guiding a variety of sub-studies. These sub-studies can incorporate multiple diseases, therapies, or both. Although this innovative approach offers many benefits, including the ability to deliver clinical research that is more patient-centric and efficient, several common barriers curtail widespread adoption. The Clinical Trials Transformation Initiative (CTTI) convened industry representatives, regulatory agencies, patient groups, and academic institutions to identify emerging best practices and develop resources designed to help sponsors and other stakeholders overcome these challenges. We first identify some broad changes needed in the clinical trials ecosystem to facilitate mainstream adoption of master protocol studies, and we subsequently summarize CTTI's resources designed to support this effort.


Subject(s)
Ecosystem , Humans , Universities
2.
Drug Evaluation Research ; 44(8):1637-1643, 2021.
Article in Chinese | Scopus | ID: covidwho-1912084

ABSTRACT

The emerging master protocol clinical research model has the advantages of accelerating drug development and shortening the development time, but it is also difficult. To solve the difficulties of sponsors of master protocols of drugs for the treatment or prevention of COVID-19, American Food and Drug Administration (FDA) issued COVID-19: Master Protocols Evaluating Drugs and Biological Products for Treatment or Prevention Guidance in May 2021. It has put forward many suggestions on the design, conduct, and statistics of the master rotocols of COVID-19 drugs. This paper introduces the FDA's guidance in detail. It is hoped that it will be helpful for China to carry out the research and supervision in this field, and also enlighten us to formulate similar guidance according to the national conditions. © 2021 Drug Evaluation Research. All Rights Reserved.

3.
Trials ; 23(1): 414, 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1862143

ABSTRACT

BACKGROUND: The INNODIA consortium has established a pan-European infrastructure using validated centres to prospectively evaluate clinical data from individuals with newly diagnosed type 1 diabetes combined with centralised collection of clinical samples to determine rates of decline in beta-cell function and identify novel biomarkers, which could be used for future stratification of phase 2 clinical trials. METHODS: In this context, we have developed a Master Protocol, based on the "backbone" of the INNODIA natural history study, which we believe could improve the delivery of phase 2 studies exploring the use of single or combinations of Investigational Medicinal Products (IMPs), designed to prevent or reverse declines in beta-cell function in individuals with newly diagnosed type 1 diabetes. Although many IMPs have demonstrated potential efficacy in phase 2 studies, few subsequent phase 3 studies have confirmed these benefits. Currently, phase 2 drug development for this indication is limited by poor evaluation of drug dosage and lack of mechanistic data to understand variable responses to the IMPs. Identification of biomarkers which might permit more robust stratification of participants at baseline has been slow. DISCUSSION: The Master Protocol provides (1) standardised assessment of efficacy and safety, (2) comparable collection of mechanistic data, (3) the opportunity to include adaptive designs and the use of shared control groups in the evaluation of combination therapies, and (4) benefits of greater understanding of endpoint variation to ensure more robust sample size calculations and future baseline stratification using existing and novel biomarkers.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Adolescent , Adult , Biomarkers , Child , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Humans , SARS-CoV-2 , Treatment Outcome
4.
Gates Open Research ; 5, 2021.
Article in English | ProQuest Central | ID: covidwho-1835890

ABSTRACT

Background: There remains a need for an effective and affordable outpatient treatment for early COVID-19. Multiple repurposed drugs have shown promise in treating COVID-19. We describe a master protocol that will assess the efficacy of different repurposed drugs as treatments for early COVID-19 among outpatients at a high risk for severe complications. Methods: The TOGETHER Trial is a multi-center platform adaptive randomized, placebo-controlled, clinical trial. Patients are included if they are at least 18 years of age, have a positive antigen test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and have an indication for high risk of disease severity, including co-morbidities, older age, or high body mass index. Eligible patients are randomized with equal chance to an investigational product (IP) or to placebo.The primary endpoint is hospitalization defined as either retention in a COVID-19 emergency setting for greater than 6 hours or transfer to tertiary hospital due to COVID-19. Secondary outcomes include mortality, adverse events, adherence, and viral clearance. Scheduled interim analyses are conducted and reviewed by the Data and Safety Monitoring Committee (DSMC), who make recommendations on continuing or stopping each IP. The platform adaptive design go-no-go decision rules are extended to dynamically incorporate external evidence on COVID-19 interventions from ongoing independent randomized clinical trials. Discussion: Results from this trial will assist in the identification of therapeutics for the treatment of early diagnosed COVID-19. The novel methodological extension of the platform adaptive design to dynamically incorporate external evidence is one of the first of its kind and may provide highly valuable information for all COVID-19 trials going forward. Clinicaltrials.gov registration: NCT04727424 (27/01/2021)

5.
Chinese Journal of New Drugs ; 30(22):2083-2090, 2021.
Article in Chinese | Scopus | ID: covidwho-1589972

ABSTRACT

Master protocol is a novel and more efficient design for clinical trial research than the traditional clinical trials. Usually a master protocol includes several sub-protocols which could investigate treatment effects of a single drug on several diseases or multiple drugs targeting a single disorder. This review compared master protocol with traditional trials in terms of the research design principle, application, and procedure flow as well as advantages and limitations. We also presented some examples of ongoing applications of master protocol designs including treatment of COVID-19 related illness. Finally, we discussed about potential implementation of master protocol in China especially under the COVID-19 pandemic with an evaluation on the relevant opportunities and challenges. © 2021, Chinese Journal of New Drugs Co. Ltd. All right reserved.

6.
Contemp Clin Trials ; 111: 106596, 2021 12.
Article in English | MEDLINE | ID: covidwho-1466090

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has had a profound impact on the mental health of people around the world. Anxiety related to infection, stress and stigma caused by the forced changes in daily life have reportedly increased the incidence and symptoms of depression, anxiety disorder and obsessive-compulsive disorder. Under such circumstances, telepsychiatry is gaining importance and attracting a great deal of attention. However, few large pragmatic clinical trials on the use of telepsychiatry targeting multiple psychiatric disorders have been conducted to date. METHODS: The targeted study cohort will consist of adults (>18 years) who meet the DSM-5 diagnostic criteria for either (1) depressive disorders, (2) anxiety disorders, or (3) obsessive-compulsive and related disorders. Patients will be assigned in a 1:1 ratio to either a "telepsychiatry group" (at least 50% of treatments to be conducted using telemedicine, with at least one face-to-face treatment [FTF] within six months) or an "FTF group" (all treatments to be conducted FTF, with no telemedicine). Both groups will receive the usual treatment covered by public medical insurance. The study will utilize a master protocol design in that there will be primary and secondary outcomes for the entire group regardless of diagnosis, as well as the outcomes for each individual disorder group. DISCUSSION: This study will be a non-inferiority trial to test that the treatment effect of telepsychiatry is not inferior to that of FTF alone. This study will provide useful insights into the effect of the COVID-19 pandemic on the practice of psychiatry. TRIAL REGISTRATION: jRCT1030210037, Japan Registry of Clinical Trials (jRCT).


Subject(s)
COVID-19 , Psychiatry , Telemedicine , Humans , Japan , Pandemics , SARS-CoV-2
7.
Trials ; 21(1): 544, 2020 Jun 19.
Article in English | MEDLINE | ID: covidwho-1331953

ABSTRACT

OBJECTIVES: Phase I - To determine the optimal dose of each candidate (or combination of candidates) entered into the platform. Phase II - To determine the efficacy and safety of each candidate entered into the platform, compared to the current Standard of Care (SoC), and recommend whether it should be evaluated further in a later phase II & III platforms. TRIAL DESIGN: AGILE-ACCORD is a Bayesian multicentre, multi-arm, multi-dose, multi-stage open-label, adaptive, seamless phase I/II randomised platform trial to determine the optimal dose, activity and safety of multiple candidate agents for the treatment of COVID-19. Designed as a master protocol with each candidate being evaluated within its own sub-protocol (Candidate Specific Trial (CST) protocol), randomising between candidate and SoC with 2:1 allocation in favour of the candidate (N.B the first candidate has gone through regulatory approval and is expected to open to recruitment early summer 2020). Each dose will be assessed for safety sequentially in cohorts of 6 patients. Once a phase II dose has been identified we will assess efficacy by seamlessly expanding into a larger cohort. PARTICIPANTS: Patient populations can vary between CSTs, but the main eligibility criteria include adult patients (≥18 years) who have laboratory-confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We will include both severe and mild-moderate patients defined as follows: Group A (severe disease) - patients with WHO Working Group on the Clinical Characteristics of COVID-19 infection 9-point ordinal scale of Grades 4 (hospitalised, oxygen by mask or nasal prongs), 5 (hospitalised, non-invasive ventilation or high flow oxygen), 6 (hospitalised, intubation and mechanical ventilation) or 7 (hospitalised, ventilation and additional organ support); Group B (mild-moderate disease) - ambulant or hospitalised patients with peripheral capillary oxygen saturation (SpO2) >94% RA. If any CSTs are included in the community setting, the CST protocol will clarify whether patients with suspected SARS-CoV-2 infection are also eligible. Participants will be recruited from England, North Ireland, Wales and Scotland. INTERVENTION AND COMPARATOR: Comparator is the current standard of care (SoC), in some CSTs plus placebo. Candidates that prevent uncontrolled cytokine release, prevention of viral replication, and other anti-viral treatment strategies are at various stages of development for inclusion into AGILE-ACCORD. Other CSTs will be added over time. There is not a set limit on the number of CSTs we can include within the AGILE-ACCORD Master protocol and we will upload each CST into this publication as each opens to recruitment. MAIN OUTCOMES: Phase I: Dose limiting toxicities using Common Terminology Criteria for Adverse Events v5 Grade ≥3 adverse events. Phase II: Agreed on a CST basis depending on mechanism of action of the candidate and patient population. But may include; time to clinical improvement of at least 2 points on the WHO 9-point category ordinal scale [measured up to 29 days from randomisation], progression of disease (oxygen saturation (SaO2) <92%) or hospitalization or death, or change in time-weighted viral load [measured up to 29 days from randomisation]. RANDOMISATION: Varies with CST, but default is 2:1 allocation in favour of the candidate to maximise early safety data. BLINDING (MASKING): For the safety phase open-label although for some CSTs may include placebo or SoC for the efficacy phase. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Varies between CSTs. However simulations have shown that around 16 participants are necessary to determine futility or promise of a candidate at a given dose (in efficacy evaluation alone) and between 32 and 40 participants are required across the dose-finding and efficacy evaluation when capping the maximum number of participants contributing to the evaluation of a treatment at 40. TRIAL STATUS: Master protocol version number v5 07 May 2020, trial is in setup with full regulatory approval and utilises several digital technology solutions, including Medidata's Rave EDC [electronic data capture], RTSM for randomisation and patient eConsent on iPads via Rave Patient Cloud. The recruitment dates will vary between CSTs but at the time of writing no CSTs are yet open for recruitment. TRIAL REGISTRATION: EudraCT 2020-001860-27 14th March 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Antiviral Agents/adverse effects , COVID-19 , Humans , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
8.
Trials ; 22(1): 487, 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1327946

ABSTRACT

BACKGROUND: There is an urgent unmet clinical need for the identification of novel therapeutics for the treatment of COVID-19. A number of COVID-19 late phase trial platforms have been developed to investigate (often repurposed) drugs both in the UK and globally (e.g. RECOVERY led by the University of Oxford and SOLIDARITY led by WHO). There is a pressing need to investigate novel candidates within early phase trial platforms, from which promising candidates can feed into established later phase platforms. AGILE grew from a UK-wide collaboration to undertake early stage clinical evaluation of candidates for SARS-CoV-2 infection to accelerate national and global healthcare interventions. METHODS/DESIGN: AGILE is a seamless phase I/IIa platform study to establish the optimum dose, determine the activity and safety of each candidate and recommend whether it should be evaluated further. Each candidate is evaluated in its own trial, either as an open label single arm healthy volunteer study or in patients, randomising between candidate and control usually in a 2:1 allocation in favour of the candidate. Each dose is assessed sequentially for safety usually in cohorts of 6 patients. Once a phase II dose has been identified, efficacy is assessed by seamlessly expanding into a larger cohort. AGILE is completely flexible in that the core design in the master protocol can be adapted for each candidate based on prior knowledge of the candidate (i.e. population, primary endpoint and sample size can be amended). This information is detailed in each candidate specific trial protocol of the master protocol. DISCUSSION: Few approved treatments for COVID-19 are available such as dexamethasone, remdesivir and tocilizumab in hospitalised patients. The AGILE platform aims to rapidly identify new efficacious and safe treatments to help end the current global COVID-19 pandemic. We currently have three candidate specific trials within this platform study that are open to recruitment. TRIAL REGISTRATION: EudraCT Number: 2020-001860-27 14 March 2020 ClinicalTrials.gov Identifier: NCT04746183  19 February 2021 ISRCTN reference: 27106947.


Subject(s)
COVID-19 , Pandemics , Cohort Studies , Humans , SARS-CoV-2 , Treatment Outcome
9.
Ann Am Thorac Soc ; 17(7): 879-891, 2020 07.
Article in English | MEDLINE | ID: covidwho-679536

ABSTRACT

There is broad interest in improved methods to generate robust evidence regarding best practice, especially in settings where patient conditions are heterogenous and require multiple concomitant therapies. Here, we present the rationale and design of a large, international trial that combines features of adaptive platform trials with pragmatic point-of-care trials to determine best treatment strategies for patients admitted to an intensive care unit with severe community-acquired pneumonia. The trial uses a novel design, entitled "a randomized embedded multifactorial adaptive platform." The design has five key features: 1) randomization, allowing robust causal inference; 2) embedding of study procedures into routine care processes, facilitating enrollment, trial efficiency, and generalizability; 3) a multifactorial statistical model comparing multiple interventions across multiple patient subgroups; 4) response-adaptive randomization with preferential assignment to those interventions that appear most favorable; and 5) a platform structured to permit continuous, potentially perpetual enrollment beyond the evaluation of the initial treatments. The trial randomizes patients to multiple interventions within four treatment domains: antibiotics, antiviral therapy for influenza, host immunomodulation with extended macrolide therapy, and alternative corticosteroid regimens, representing 240 treatment regimens. The trial generates estimates of superiority, inferiority, and equivalence between regimens on the primary outcome of 90-day mortality, stratified by presence or absence of concomitant shock and proven or suspected influenza infection. The trial will also compare ventilatory and oxygenation strategies, and has capacity to address additional questions rapidly during pandemic respiratory infections. As of January 2020, REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) was approved and enrolling patients in 52 intensive care units in 13 countries on 3 continents. In February, it transitioned into pandemic mode with several design adaptations for coronavirus disease 2019. Lessons learned from the design and conduct of this trial should aid in dissemination of similar platform initiatives in other disease areas.Clinical trial registered with www.clinicaltrials.gov (NCT02735707).


Subject(s)
Community-Acquired Infections/therapy , Coronavirus Infections/therapy , Influenza, Human/therapy , Pneumonia, Viral/therapy , Pneumonia/therapy , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Evidence-Based Medicine , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2
10.
Clin Trials ; 18(3): 324-334, 2021 06.
Article in English | MEDLINE | ID: covidwho-1063163

ABSTRACT

BACKGROUND: Clinical trials, conducted efficiently and with the utmost integrity, are a key component in identifying effective vaccines, therapies, and other interventions urgently needed to solve the COVID-19 crisis. Yet launching and implementing trials with the rigor necessary to produce convincing results is a complicated and time-consuming process. Balancing rigor and efficiency involves relying on designs that employ flexible features to respond to a fast-changing landscape, measuring valid endpoints that result in translational actions and disseminating findings in a timely manner. We describe the challenges involved in creating infrastructure with potential utility for shared learning. METHODS: We have established a shared infrastructure that borrows strength across multiple trials. The infrastructure includes an endpoint registry to aid in selecting appropriate endpoints, a registry to facilitate establishing a Data & Safety Monitoring Board, common data collection instruments, a COVID-19 dedicated design and analysis team, and a pragmatic platform protocol, among other elements. RESULTS: The authors have relied on the shared infrastructure for six clinical trials for which they serve as the Data Coordinating Center and have a design and analysis team comprising 15 members who are dedicated to COVID-19. The authors established a pragmatic platform to simultaneously investigate multiple treatments for the outpatient with adaptive features to add or drop treatment arms. CONCLUSION: The shared infrastructure provides appealing opportunities to evaluate disease in a more robust manner with fewer resources and is especially valued during a pandemic where efficiency in time and resources is crucial. The most important element of the shared infrastructure is the pragmatic platform. While it may be the most challenging of the elements to establish, it may provide the greatest benefit to both patients and researchers.


Subject(s)
COVID-19/therapy , Clinical Trials as Topic/methods , Pandemics , Clinical Trial Protocols as Topic , Clinical Trials Data Monitoring Committees , Endpoint Determination , Humans , SARS-CoV-2
11.
Contemp Clin Trials ; 100: 106225, 2021 01.
Article in English | MEDLINE | ID: covidwho-938802

ABSTRACT

In the past decades, the world has experienced several major virus outbreaks, e.g. West African Ebola outbreak, Zika virus in South America and most recently global coronavirus (COVID-19) pandemic. Many vaccines have been developed to prevent a variety of infectious diseases successfully. However, several infections have not been preventable so far, like COVID-19, which induces an immediate urgent need for effective vaccines. These emerging infectious diseases often pose unprecedent challenges for the global heath community as well as the conventional vaccine development paradigm. With a long and costly traditional vaccine development process, there are extensive needs in innovative vaccine trial designs and analyses, which aim to design more efficient vaccines trials. Featured with reduced development timeline, less resource consuming or improved estimate for the endpoints of interests, these more efficient trials bring effective medicine to target population in a faster and less costly way. In this paper, we will review a few vaccine trials equipped with adaptive design features, Bayesian designs that accommodate historical data borrowing, the master protocol strategy emerging during COVID-19 vaccine development, Real-World-Data (RWD) embedded trials and the correlate of protection framework and relevant research works. We will also discuss some statistical methodologies that improve the vaccine efficacy, safety and immunogenicity analyses. Innovative clinical trial designs and analyses, together with advanced research technologies and deeper understanding of the human immune system, are paving the way for the efficient development of new vaccines in the future.


Subject(s)
Clinical Trials as Topic/organization & administration , Drug Development/organization & administration , Viral Vaccines , Bayes Theorem , Biomedical Research , Humans , Time Factors
12.
Trials ; 21(1): 691, 2020 Jul 31.
Article in English | MEDLINE | ID: covidwho-699024

ABSTRACT

OBJECTIVES: Stage 1: To evaluate the safety and efficacy of candidate agents as add-on therapies to standard of care (SoC) in patients hospitalised with COVID-19 in a screening stage. Stage 2: To confirm the efficacy of candidate agents selected on the basis of evidence from Stage 1 in patients hospitalised with COVID-19 in an expansion stage. TRIAL DESIGN: ACCORD is a seamless, Phase 2, adaptive, randomised controlled platform study, designed to rapidly test candidate agents in the treatment of COVID-19. Designed as a master protocol with each candidate agent being included via its own sub-protocol, initially randomising equally between each candidate and a single contemporaneous SoC arm (which can adapt into 2:1). Candidate agents currently include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin. For each candidate a total of 60 patients will be recruited in Stage 1. If Stage 1 provides evidence of efficacy and acceptable safety the candidate will enter Stage 2 where a total of approximately 126 patients will be recruited into each study arm sub-protocol. Enrollees and outcomes will not be shared across the Stages; the endpoint, analysis and sample size for Stage 2 may be adjusted based on evidence from Stage 1. Additional arms may be added as new potential candidate agents are identified via candidate agent specific sub-protocols. PARTICIPANTS: The study will include hospitalised adult patients (≥18 years) with confirmed SARS-CoV-2 infection, the virus that causes COVID-19, that clinically meet Grades 3 (hospitalised - mild disease, no oxygen therapy), Grades 4 (hospitalised, oxygen by mask or nasal prongs) and 5 (hospitalised, non-invasive ventilation or high flow oxygen) of the WHO Working Group on the Clinical Characteristics of COVID-19 9-point category ordinal scale. Participants will be recruited from England, Northern Ireland, Wales and Scotland. INTERVENTION AND COMPARATOR: Comparator is current standard of care (SoC) for the treatment of COVID-19. Current candidate experimental arms include bemcentinib, MEDI3506, acalabrutinib, zilucoplan and nebulised heparin with others to be added over time. Bemcentinib could potentially reduce viral infection and blocks SARS-CoV-2 spike protein; MEDI3506 is a clinic-ready anti-IL-33 monoclonal antibody with the potential to treat respiratory failure caused by COVID; acalabrutinib is a BTK inhibitor which is anti-viral and anti-inflammatory; zilucoplan is a complement C5 inhibitor which may block the severe inflammatory response in COVID-19 and; nebulised heparin has been shown to bind with the spike protein. ACCORD is linked with the UK national COVID therapeutics task force to help prioritise candidate agents. MAIN OUTCOMES: Time to sustained clinical improvement of at least 2 points (from randomisation) on the WHO 9-point category ordinal scale, live discharge from the hospital, or considered fit for discharge (a score of 0, 1, or 2 on the ordinal scale), whichever comes first, by Day 29 (this will also define the "responder" for the response rate analyses). RANDOMISATION: An electronic randomization will be performed by Cenduit using Interactive Response Technology (IRT). Randomisation will be stratified by baseline severity grade. Randomisation will proceed with an equal allocation to each arm and a contemporaneous SoC arm (e.g. 1:1 if control and 1 experimental arm; 1:1:1 if two experimental candidate arms etc) but will be reviewed as the trial progresses and may be changed to 2:1 in favour of the candidate agents. BLINDING (MASKING): The trial is open label and no blinding is currently planned in the study. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): This will be in the order of 60 patients per candidate agent for Stage 1, and 126 patients for Stage 2. However, sample size re-estimation may be considered after Stage 1. It is estimated that up to 1800 patients will participate in the overall study. TRIAL STATUS: Master protocol version ACCORD-2-001 - Master Protocol (Amendment 1) 22nd April 2020, the trial has full regulatory approval and recruitment is ongoing in the bemcentinib (first patient recruited 6/5/2020), MEDI3506 (first patient recruited 19/5/2020), acalabrutinib (first patient recruited 20/5/2020) and zilucoplan (first patient recruited 19/5/2020) candidates (and SoC). The recruitment dates of each arm will vary between candidate agents as they are added or dropped from the trial, but will have recruited and reported within a year. TRIAL REGISTRATION: EudraCT 2020-001736-95 , registered 28th April 2020. FULL PROTOCOL: The full protocol (Master Protocol with each of the candidate sub-protocols) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Antiviral Agents/adverse effects , Benzamides/therapeutic use , COVID-19 , Hospitalization , Humans , Pandemics , Pyrazines/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Standard of Care , COVID-19 Drug Treatment
13.
Gates Open Res ; 4: 58, 2020.
Article in English | MEDLINE | ID: covidwho-641921

ABSTRACT

It is critical to ensure that COVID-19 studies provide clear and timely answers to the scientific questions that will guide us to scalable solutions for all global regions. Significant challenges in operationalizing trials include public policies for managing the pandemic, public health and clinical capacity, travel and migration, and availability of tests and infrastructure. These factors lead to spikes and troughs in patient count by location, disrupting the ability to predict when or if a trial will reach recruitment goals. The focus must also be on understanding how to provide equitable access to these interventions ensuring that interventions reach those who need them the most, be it patients in low resource settings or vulnerable groups.  We introduce a website to be used by The Bill & Melinda Gates Foundation, Wellcome Trust, and other funders of the COVID Therapeutics Accelerator that accept proposals for future clinical research. The portal enables evaluations of clinical study applications that focus on study qualities most likely to lead to informative outcomes and completed studies.

SELECTION OF CITATIONS
SEARCH DETAIL